Hiroyuki MORIKAWA Eiji KONDO Hiroshi HARASHIMA
We describe an approach for modelling a person's face for model-based coding. The goal is to estimate the 3D shape by combining the contour analysis and shading analysis of the human face image in order to increase the quality of the estimated 3D shape. The motivation for combining contour and shading cues comes from the observation that the shading cue leads to severe errors near the occluding boundary, while the occluding contour cue provides incomplete surface information in regions away from contours. Towards this, we use the deformable model as the common level of integration such that a higher-quality measurement will dominate the depth estimate. The feasibility of our approach is demonstrated using a real facial image.
Mooryong JEONG Hiroyuki MORIKAWA Tomonori AOYAMA
Fairness as defined in wireline network cannot be achieved in wireless packet networks due to the bursty and location-dependent channel errors of wireless link. Channel-state dependent scheduling and compensation mechanism for errored flows are generally employed to improve the fairness in wireless packet scheduling algorithms. Most of the wireless scheduling algorithms, however, have two common significant problems. One problem is that they operate incorrectly unless all flows have the same packet size. This is due to the incorrect lead-and-lag model and the swapping-based rough compensation mechanism of the algorithms. The other problem is the degradation of error-free flow during compensation. The root of the degradation is that the bandwidth for compensation cannot be reserved since it is very difficult to predict. In this paper, we introduce WGPS (Wireless General Processor Sharing) to define fairness in wireless networks and present PWGPS as a packetized algorithm of WGPS. In our method, lead and lag of all flows are defined in terms of virtual time which is flexible enough to deal with packet size differences. Further, compensation is done by increasing the service share of the errored flow to a predetermined amount Δ. This enables the maximum bandwidth for compensation can be estimated and thus reserved. Our method can be proved to achieve improved fairness as compared with the previous scheduling algorithms.
Yongmei SUN Tomohiro HASHIGUCHI Vu Quang MINH Xi WANG Hiroyuki MORIKAWA Tomonori AOYAMA
In the future network, optical technology will play a stronger role not only for transmission but also for switching. Optical burst switching (OBS) emerged as a promising switching paradigm. It brings together the complementary strengths of optics and electronics. This paper presents the design and implementation of an overlay mode burst-switched photonic network testbed, including its architecture, protocols, algorithms and experiments. We propose a flexible "transceiver + forwarding" OBS node architecture to perform both electronic burst assembly/disassembly and optical burst forwarding. It has been designed to provide class of service (CoS), wavelength selection for local bursts, and transparency to cut-through bursts. The functional modules of OBS control plane and its key design issues are presented, including signaling, routing, and a novel scheduling mechanism with combined contention resolution in space and wavelength domains. Finally, we report the experimental results on functional verification, performance analysis and service demonstration.
The Reed-Solomon code is a versatile channel code pervasively used for communication and storage systems. The bit-serial Reed-Solomon encoder has a simple structure, although it is somewhat difficult to understand the algorithm without considerable theoretical background. Some professionals and students, not able to understand the algorithm thoroughly, might need to implement the bit-serial encoder for themselves. In this letter, a step-by-step method is presented for the implementation of the bit-serial encoder even without understanding the internal algorithm, which would be helpful for VHDL, DSP, and simulation programming.
Andreas DARMAWAN Hiroyuki MORIKAWA
We investigate and propose the utilization of regenerative and non-regenerative relaying terminals in downlink cooperative MIMO communications, such as in base-station/router-relay-user transmission under different schemes. The source is equipped with multiple antennas, while the relays and destination are single-antenna terminals. From the source to the relays, symbols are transmitted using MIMO spatial-multiplexing technique. Depending on the type of relaying scheme, the relays either fully decode or amplify the received signal before retransmitting it to the destination using simple TDM transmission or Alamouti's space-time coding. We show that the proposed system realizes MIMO performance in single-antenna system environment, and performance-wise it is superior to existing transmission schemes, especially in low-SNR conditions. Furthermore, the proposed system is shown to give a diversity order of N-M+1, similar to that of MIMO V-BLAST system.
Hiroyuki MORIKAWA@Dan Keun SUNG
Eisuke FUKUDA Yasuyuki OISHI Takeshi TAKANO Daisuke TAKAGO Yoshimasa DAIDO Hiroyuki MORIKAWA
This paper describes the details of the iteration process used to determine the transfer functions of linear time-invariant (LTI) circuits causing the memory effect of power amplifier (PA). An outline of the method is reported in our work presented at ICCS2012. The accuracy of the method is improved by using cross-correlation spectra at three signal levels, and its validity is confirmed by a computer simulation. The method can be applied to online updating of PAs operating in mobile communication systems. The updating is realized separately from the fast varying nonlinear coefficients. The possibility of updating with a short interval is indirectly shown for the nonlinear coefficients using a procedure similar to that of memoryless PAs. For PAs characterized by the method, this paper also describes the inverses that cancel the nonlinear distortion with minimum complexity. The validity of the inverse is confirmed by a computer simulation on the power spectrum of the PA for orthogonal frequency-division multiplexing (OFDM) signals with 500 subcarriers. The simulated spectra show that the fifth order or higher inverses are effective in keeping adjacent channel leakage power ratio (ACLR) lower than -60dB at the practical signal level. Improvements in the error vector magnitude (EVM) due to the inverse were also confirmed by reductions of gain and phase variations under varying envelope conditions.